Neural Representations that Support Invariant Object Recognition

نویسندگان

  • Robbe L. T. Goris
  • Hans P. Op de Beeck
چکیده

Neural mechanisms underlying invariant behaviour such as object recognition are not well understood. For brain regions critical for object recognition, such as inferior temporal cortex (ITC), there is now ample evidence indicating that single cells code for many stimulus aspects, implying that only a moderate degree of invariance is present. However, recent theoretical and empirical work seems to suggest that integrating responses of multiple non-invariant units may produce invariant representations at population level. We provide an explicit test for the hypothesis that a linear read-out mechanism of a pool of units resembling ITC neurons may achieve invariant performance in an identification task. A linear classifier was trained to decode a particular value in a 2-D stimulus space using as input the response pattern across a population of units. Only one dimension was relevant for the task, and the stimulus location on the irrelevant dimension (ID) was kept constant during training. In a series of identification tests, the stimulus location on the relevant dimension (RD) and ID was manipulated, yielding estimates for both the level of sensitivity and tolerance reached by the network. We studied the effects of several single-cell characteristics as well as population characteristics typically considered in the literature, but found little support for the hypothesis. While the classifier averages out effects of idiosyncratic tuning properties and inter-unit variability, its invariance is very much determined by the (hypothetical) 'average' neuron. Consequently, even at population level there exists a fundamental trade-off between selectivity and tolerance, and invariant behaviour does not emerge spontaneously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant recognition drives neural representations of action sequences

Recognizing the actions of others from visual stimuli is a crucial aspect of human perception that allows individuals to respond to social cues. Humans are able to discriminate between similar actions despite transformations, like changes in viewpoint or actor, that substantially alter the visual appearance of a scene. This ability to generalize across complex transformations is a hallmark of h...

متن کامل

A chicken model for studying the emergence of invariant object recognition

"Invariant object recognition" refers to the ability to recognize objects across variation in their appearance on the retina. This ability is central to visual perception, yet its developmental origins are poorly understood. Traditionally, nonhuman primates, rats, and pigeons have been the most commonly used animal models for studying invariant object recognition. Although these animals have ma...

متن کامل

Size Precedes View: Developmental Emergence of Invariant Object Representations in Lateral Occipital Complex

Although object perception involves encoding a wide variety of object properties (e.g., size, color, viewpoint), some properties are irrelevant for identifying the object. The key to successful object recognition is having an internal representation of the object identity that is insensitive to these properties while accurately representing important diagnostic features. Behavioral evidence ind...

متن کامل

Invariant Object Recognition in the Visual System with Novel Views of 3D Objects

To form view-invariant representations of objects, neurons in the inferior temporal cortex may associate together different views of an object, which tend to occur close together in time under natural viewing conditions. This can be achieved in neuronal network models of this process by using an associative learning rule with a short-term temporal memory trace. It is postulated that within a vi...

متن کامل

Transformation-invariant visual representations in self-organizing spiking neural networks

The ventral visual pathway achieves object and face recognition by building transformation-invariant representations from elementary visual features. In previous computer simulation studies with rate-coded neural networks, the development of transformation-invariant representations has been demonstrated using either of two biologically plausible learning mechanisms, Trace learning and Continuou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in Computational Neuroscience

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2009